High latitude fish in a high CO2 world: Synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids.

نویسندگان

  • Laura A Enzor
  • Mackenzie L Zippay
  • Sean P Place
چکیده

Although the physiological response of teleost fishes to increased temperature has been well documented, there is only a small body of literature that examines the effects of ocean acidification on fish under ecologically relevant scenarios. Furthermore, little data exists which examines the possible synergistic effects of increased sea surface temperatures and pCO(2) levels, although it is well established that both will co-committedly change in the coming centuries. In this study we examined the effects of increased temperature, increased pCO(2), and a combination of these treatments on the resting metabolic rate (RMR) of four species of notothenioid fish, Trematomus bernacchii, T. hansoni, T. newnesi, and Pagothenia borchgrevinki, acclimated to treatment conditions for 7, 14 or 28days. While most species appear capable of rapidly acclimating to increased pCO(2), temperature continues to impact RMRs for up to 28days. One species in particular, T. newnesi, displayed no acclimatory response to any of the treatments regardless of acclimation time and may have a reduced capacity to respond to environmental change. Furthermore, we present evidence that temperature and pCO(2) act synergistically to further elevate the RMR and slow acclimation when compared to temperature or pCO(2) increases alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish

Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies, ecosystems and concurrent ocean warming ...

متن کامل

Synthesis and Characterization of Amine-modified Mesoporous SBA-15 for Carbon Dioxide Sequestration at High Pressure and Room Temperature (RESEARCH NOTE)

Amine-modified mesoporous SBA-15 adsorbent has been prepared by impregnation method using tetraethylenepentamine. The samples of this modified SBA-15 have been characterized by small angle X-ray scattering (SAXS), Scanning electron microscopy (SEM), Nitrogen adsorption-desorption isotherm and FT-IR. The adsorption capacity of CO2 on unmodified and modified samples were measured at high pressure...

متن کامل

CO2 Removal from Air in a Countercurrent Rotating Packed Bed, Experimental Determination of Height of Transfer Unit

Carbon dioxide capture is a key issue in climate change mitigation. For decades the removal of carbon dioxide has been an essential step in many industrial processing operations such as the synthesis of ammonia, natural gas purification, and oil refining. In this study, a rotating packed bed has been designed for absorption of carbon dioxide from an air stream. The rotating packed bed is a comp...

متن کامل

Elevated CO2 enhances aerobic scope of a coral reef fish

The uptake of anthropogenic CO2 by the ocean has been suggested to impact marine ecosystems by decreasing the respiratory capacity of fish and other water breathers. We investigated the aerobic metabolic scope of the spiny damselfish, Acanthochromis polyacanthus, from the Great Barrier Reef, Australia when exposed for 17 days to CO2 conditions predicted for the end of the century (946 μatm CO2)...

متن کامل

The Antagonistic Effect of Raised Salinity on the Aerobic Performance of a Rocky Intertidal Gastropod Nassarius deshayesianus (Issel, 1866) Exposed to Raised Water Temperature

Rocky intertidal organisms are facing pronounced fluctuations in environmental conditions even at small spatial and temporal scales. This heterogeneous habitat is a proper model system to investigate effects of physical parameters and their interactions on physiological performances of marine organisms. In the intertidal zone (especially in tidal pools), the temperature and salinity usually inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comparative biochemistry and physiology. Part A, Molecular & integrative physiology

دوره 164 1  شماره 

صفحات  -

تاریخ انتشار 2013